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Introduction.
Hg-I)ynamics. In 1918 the author designed a new

pump, the electromagnetic pump, for use in connection 
with the so-called jet-wave rectifier. The pump is shown 
in fig. 1. Between the pole pieces NS of a strong electro- .
magnet a gap is formed. The surfaces of the pole pieces,
which form the walls of the gap, 
insulating coating, and the gap is 
closed above and below by two elec­
trodes We will assume that
the channel thus formed is inserted 
at such a point in a hydrodynamic 
circuit with mercury, that it is al­
ways kept filled with this liquid. If, 
then, an electric current is passed 
through the gap from one electrode 
to the other the interaction between 
this current and the field will pro­
duce a “hydromotive force” in the

Fig. 1. Electromagnetic 
Pump.

are covered with an

direction of the axis of the channel, i. e. the apparatus will
act as a pump. It is, as a matter of fact, at the same 
time an electromotor and a pump, the armature of the
motor being the liquid to be transported by the pump.

The invention is, as will be seen, no very ingenious one, 
the principle utilized being borrowed directly from a well 
known apparatus for measuring strong magnetic fields.
Neither does the device represent a particularly effective 
pump, the efficiency being extremely low due mainly to the 

1



4 Nr. 6. Jul. Hartmann:

large resistivity of mercury and still more to the contact 
resistance between the electrodes and the mercury. In spite 
hereof considerable interest was in the course of time be­
stowed on the apparatus, firstly because of a good many 
practical applications in cases where the efficiency is of 
small moment and then, during later years, owing to its 
inspiring nature. As a matter of fact the study of the pump 
revealed to the author what he considered a new field of

Fig. 2. Perpendicular Combination of homogeneous hydrodynamic, elec­
tric and magnetic Fields of Flow.

investigation, that of the flow of a conductive liquid in a 
magnetic field, a field for which the name Hg-dynamics 
was suggested \

In the electromagnetic pump of the simple form de­
scribed above we have to do with the system indicated in 
fig. 2. In the space confined between the pole pieces NS 
and the electrodes E2 two homogeneous fields perpen­
dicular to each other may be set up: a magnetic field and 
an electric current field. If the space forms part of a 
hydrodynamic circuit with mercury a third homogeneous 
— or nearly homogeneous — field perpendicular to the 
two others may be created, viz. a liquid current field. The 
theory of the electromagnetic pump is the theory of the

1 Fourth International Congress for Applied Mechanics. Cambridge 
1934. Abstracts of Papers p. 40.
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interaction of these three fields and Hg-Dynamics in its 
general form is the theory of the same three fields in every 
possible combination, each of the fields being free to vary 
as well in space as in time.

It will at once be gathered that the complete analytical 
solution of the problems of Hg-dynamics is as a rule pre­
cluded. The distribution over the liquid medium of velocity, 
pressure, electromotive force, electric current, magnetic 
field intensity etc. is given by the combination of the 
ordinary hydrodynamical equations: — the equations of 
momentum and the equation of continuity — with the 
general equations of electrodynamics: — Faraday’s Law of 
induction, Biot and Savart’s Law, Ohm’s Law, the Induc­
tion Law for moving conductors — the distribution being 
furthermore governed by the various mechanical, electric 
and magnetic boundary conditions. In spite of the tremen­
dous intricacy of the analysis certain problems can be 
solved — exactly or approximately — because of their 
comparatively great simplicity. Other problems, while not 
susceptible of any theoretical analysis, nevertheless demand 
solution — owing to the interest attaching to them — and 
consequently attain solution through experimental analysis.

One of the problems which is capable of a fairly com­
plete theoretical analysis under certain simple conditions 
is the laminar How of a conductive liquid in a homo­
geneous magnetic field. An example of the other class of 
problems not accessible to such analysis is the turbulent 
flow of a conductive liquid in a homogeneous magnetic 
field1. Both problems have a bearing on the electromagne- 

1 It may here be stated that it was precisely the search for a means 
of influencing the turbulence of a liquid flow that led to the realisation 
of the existence of the new field of research, the field of Hg-Dynamics.
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tic pump. The former is dealt with in the present theore­
tical paper. The experimental verification of the theory will 
be given in a following publication.

The author is indebted to several of his collaborators 
for suggestions in connection with the discussion of the 
problem dealt with in the present paper and other related 
problems. He particularly desires to thank Mr. Lögstrup 
Jensen for valuable assistance. He acknowledges with 
gratitude the receipt of financial aid granted by the Trus­
tees of the Carlsberg Foundation in connection with the 
completion of the present work.
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1. Differential Equation for the Velocity Distribution 
across a rectangular Channel with conductive 

Top and Bottom.
A channel with a rectangular cross-section, tig. 3, is 

considered. The width 2 a of the section is assumed small 
compared to the height h. In accordance herewith the

a b
Fig. 3 a—b. Channel with rectangular Cross-Section.
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effect of the upper and lower walls on the flow is neg­
lected. These walls are formed of a highly conductive 
material, while the liquid of the flow is mercury. The 
magnetic field H is supposed to be perpendicular to the 
side walls of the channel.

The theory of the laminar flow with no field put on 
is well known. One cm.2 of a layer of thickness dx will

G? 2 P
be acted on by a resultant frictional force q , .> -dx in the 

' dx“
direction of the flow, v being the velocity of the liquid and 
q the viscosity of the same. This force is compensated by 

a pressure drop y- dx, L being the length of the channel
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from which

and p the total pressure required to drive the liquid through 
the channel. So

(2) v = -4(a2-x2), (2a) V = \ uhdx = |Tia3,
2^L J_a 3

V being the volume flow of the fluid. Hence there would 
be a parabolic velocity distribution across the channel.

Now, with the field on, electromotive forces are induced 
in the various layers, the force in an arbitrary layer being

(3) ex = \Q~^vxhH Volt.

The electromotive forces will give rise to a current dis­
tribution determined as follows. Let the voltage difference 
between the bottom and the top of the channel be E, then 
for an arbitrary layer the current 1 vdx, I x, being the cur­
rent density, is determined by

(4) E + ex = IxdxLx--^ = Ixxh,

x being the specific resistance of the liquid.
Again the total electric current flow from the bottom 

to the top is zero, i. e.

p+a
(5) \ Ixdx = 0.

—a

Introducing the expression for Ix taken from (4) into (5) 
we get

(6) \ (E + ex) dx = 0

v— a
or
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(7)

em being the mean value of the electromotive force. So 

<8) Ix== Th ^~e'^ = 10 8 ? Û^-%) Amp./cm2

where
p+ a

(9) = Ia\V^dx-

v~a

Now the pressure gradient to which the interaction of the 
current and the field gives rise is

and so the total pressure drop in the layer is /), L i. e.

It is tending to hamper the motion of the flow while the 
frictional force tends (formally) to speed up the motion. 
So it will be gathered that the pressure required to main­
tain the flow is now determined by 

or by

v being written instead of vx. This equation determines the 
steady velocity distribution after the magnetic field is put on.
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We will assume that with no field put on there 
is a steady flow characterised by

(14) v = ~~ (a2 — x2).

Then, suddenly, the magnetic field is set on. We ask 
for the current distribution at the first moment when 
the velocity distribution is still unaltered. The current 
distribution is determined by

(15)
where

(16)

Introducing v and vm taken from the first and the 
third formula into (15), we find

(17)

Finally the electromagnetic pressure gradient is deter­
mined by

We may consider an arrangement for which a = 
0.125 cm., z = 10-4 Ohm-cm., q — 0.0159 (c. g. s.), 
H — 104 Gauss (Liquid: Mercury). With these values 
the formulae (14), (15) and (18) become

v = 31.4 -(1.56-IO“2-x2) cm./sec.

Z = 31.4 J -(0.520-10 2—x2) Amp./cm.2

= 31.4-103 £--(0.520-10 2-x2) dyne/cm.2.
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In the middle plane x = 0 all the three quantities 
are maximum. Their values are

pmax = 0-490 cm./sec.,

Anax = 0-163 AlnP-/Cnl-2>

Pe, max = 163 £ dyne/cm2.

Fig. 4. Distribution of Velocity, Current and electromagnetic Pres­
sure Gradient at the Moment the Field is set on.

Thus, it is seen, that at the first moment the electro­
magnetic pressure gradient is 163 times greater than 
the hydrodynamic pressure gradient required to main­
tain the viscous flow. Fig. 4 shows graphically the 
distribution of the quantities v/ph, I/ph and pjph, 
where ph = p/L.
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2. Solution of the Differential Equation for the 
Velocity Distribution.

The differential equation determining the velocity dis­
tribution across the channel was

where C is an unknown constant, (2) may be written

the solution of which is

(7)
B+C zv i zv — AxCre + C2e

From the two conditions

(8) v = 0, when x = ± a
it is found that

(9)

hence

B + C 1
4 2 .4a , —.4ae + e 

(10)
B+C /

A2
+
+ e~ /

v 1
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Inserting this expression into (5), the following equation 
for the determination of C is derived

(U)

from

(12)

A2
2 a

which

Ç+nB + C
? A2

Ax 
e
Aa 

e
dx

C = B
Aa i —Aa e + e
Aa —Aae — e

C,

Introducing into (10) we obtain the final formula for v:

(13) v
Aa i -Aa / Ax . —Ax'Ba e + e ( 1 e + e

A Aa — Aa \ Aa . —AaA e — e v e -j- e

or in hyperbolic functions

(14)
Ba cosh A a — cosh Ax
A sinh Aa

3. Influence of the magnetic Field on the Velocity 
Distribution.

We may now, first of all, discuss the influence of the 
magnetic field on the velocity distribution across the rect­
angular duct. Assuming in the first instance that Aa — z0 
is markedly smaller than unity we may in the formula 
(13) of the preceding paragraph develop the exponential 
terms in series. Neglecting terms of a higher power than 
the fourth we find

7 2 2 _l/7 4

zo Z 12

o 7 _i_ £o_ 2z°+ 3

. This formula may be written

(1)

stands forwhere

Ba2
v = ----

P
2qL

• (a2 — æ2) ( 1 — f2 ” æ2))
(2) v
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from which the average velocity over the cross-section is 
found to be

On comparing formula (2) to formula (2) of paragraph 1 
it is seen that the effect of the magnetic field, when 
Aa « 1, is to reduce the velocity of each layer of the flow 
slightly (and so also the average velocity). Let da = 0.5, 
then the reduction of the central velocity (x = 0) is, as 
will be seen, about 2 p. c. and that of the average velocity

II2,about 1.7 p. c. Now A2 a2 = 10~9 -a2. So, with Aa = 0.5,q z
H2 a2 = ^-10y. With mercury x = 10—4 Ohm • cm. ap- 

proximately and = 0.0160 c. g. s. In case of a = 0.125 cm. 
we find that H must be equal to 160 Gauss to make 
Aa — 0.5. With a 10 p. c. solution of NaCl = 0.01 c. g. s. 
and x = 8.25 Ohm • cm. approximately from which Ha — 
4.55-10’ with Aa — 0.5. So, if H is taken to be 1000 Gauss 
a must be chosen equal to 0.445 cm. in order to make 
Aa = 0.5.

Now, if on the other hand Aa is very large so that 
e 'la is quite negligible compared to eAa, a great change in 

the average velocity of the flow and at the same time in 
the velocity distribution may ensue. The average velocity

Q
*s eflua^ 1° .2 (paragraph 2, equation (5)). So from the 

formula (12) of paragraph 2 it follows that, under the 
conditions referred

(4)

or approximately
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The average velocity with no field on is

(6)
Hence

(7)

Fig. 5. Velocity Distributions when the Flow has become steady.

With mercury, with a — 0.125 cm. and H = 10000
Gauss Aa = 31.3 and eAtl = 38.0-10t2 while e~Aa is ex­
tremely small. So the condition for the approximation is

amply fulfilled and we find —— = 10.45. Thus
%-2

case considered the average velocity is reduced to

in the

the field, it being assumed that the pressure gradient is 

kept unchanged. At the same flow of liquid - .

Thus in our example the pressure gradient must with the 
field on be 10 times what it is with no field on in order 
to produce the same flow.



16 Nr. 6. Jul. Hartmann:

Finally fig. 5 represents the velocity distribution over 
one half of a 0.250 cm. wide channel corresponding to four 
values of the magnetic field. It is assumed that the liquid 
is mercury and that the flow is laminar. The velocities 
correspond to unit pressure gradient. It is seen that the 
effect of the field is to reduce the average velocity and to 
flatten out the velocity distribution curve. At a field H = 
10000 Gauss the velocity has become constant over most 
of the section.

4. The electromagnetic Viscosity.
Returning to the general expression for v, equation (13) 

paragraph 2, we may now derive the corresponding for­
mula for the average velocity over the cross-section. It is 
found to be

The volume flow through the duct is

(2) V = vm2ah = 2f- a3 h

Comparing (2) with formula (2 a) paragraph 1 it is seen 
that the volume flow with the magnetic field on is the 
same that would ensue without the field, but with the same 
pressure drop, if the viscosity were
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(3)

fanhz0
Zq

tanhz0
zo

For i]'e the terni apparent or virtual viscosity may be used. 
Assuming z0 = Aa sufficiently small compared to 1 we may 
use the approximation 

giving

(4) 
where

(5) 

may be termed the electromagnetic viscosity. Formula (4) 
obviously represents the variation of the apparent viscosity 
with the field intensity H, when H is small (or the chan­
nel very narrow).

If, on the other hand, z0 is large compared to 1 (strong 
fields), then we may write

or

(6') )/,77e+-|.

So while with feeble fields the apparent viscosity — or rather 
the electromagnetic viscosity — varies in a parabolic man­
ner with the field intensity H, the apparent viscosity varies 
linearly with H when H is large. These features of the 
electromagnetic viscosity are clearly elucidated by a graph 
of the function

Vidensk. Selsk. Math.-fys. Medd. XV, 6. 2
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In fig. 6 such a graph is shown.
Finally we may draw attention to a peculiar interpret­

ation which may be given of the electromagnetic viscosity

H'2^
7je (equation (5)). This quantity is------- multiplied by a

dimensionless factor. Let us assume a beam cut out of 
the liquid across the channel in the way illustrated in 
fig. 7. Let the width and the height of the beam both be 
1 cm. and let these two dimensions be in the direction of 
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the axis of the channel and perpendicular to the same 
respectively. The length of the beam is 2 a. Now the volume 
of the beam is obviously 2 a so 2H2a is proportional to 
the magnetic energy stored up in the space occupied by 
the beam. The resistance met by the induced current in 

the beam is -—. So the virtual viscosity is simply propor­

tional to the ratio of the magnetic energy in the beam 
considered and the electric resistance of the fluid in the

Fig. 7. Diagram illustrating the Nature of the electromagnetic Viscosity.

same beam perpendicularly to the magnetic field and to 
, _ „ , . H2a2 H2a2h . . ,the flow. Replacing by  -— it is seen that the

virtual viscosity is also proportional to the ratio of the 
magnetic energy in a slice of 1 cm. thickness cut out of 
the flow and the electric resistance of the fluid in this 
slice taken perpendicularly to the motion and to the field.

5. The Channel short-circuited through a Conductor 
containing Resistance and electromotive Force.

We shall now imagine the top and the bottom of the 
channel in fig. 3 to be connected through a conductor con­
taining a resistance R and an electromotive force E. Then

2
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(O

e = 10-8/i//p.

flow. Hence we have

(3)

(4)

Cl

Noting that
a

10 9 H2
Z 7/

z h is the electric resistance in the channel

bottom. Substituting

(6)

(7) — B,

P, R EH

Introducing e 
into equation

the current density in an arbitrary layer of the flow is 
determined by

and 1 taken from (2) and (3) respectively
(1) this equation assumes the shape

where
(2)

P

A2,

I = 0
a

Again it is assumed that a pressure gradient p is main­
tained in the

we may write (4) in the form 
a

II210 9 —
7/Z

R  EH RL
Rc lOq x h z h

d~v
(5)

where R
c 2a L

between top and

(8)
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(9)
2RL (dv\ _
Z h \dx)a

where A and B thus stand for the same qualities as in 
paragraph 2, equation (5) may he written

(10) ^-A2p + B + P+C = 0.
dx

Noting that v = 0 for x = a and x = — a the solution is
found to he

(ID
B + D + C

A2

C is now found by differentiating equation (11):

(12) A

Introducing x — a we find

C
a

from which

(14) .laz/1

da 
dx

.la e
4a 

e

.lx — Ax 
e — e
•la , —Aa ‘

e + e

Introducing finally into (11) we arrive al the formula:

(15) BAD
x h

2RL / Ax . — 4x'
e + e

x h
Aa — Aa I 1

e —e \ .la i — Aa 
e A~ e

2RL
’ A + Aa . — Aa

€ T C

Comparing with formula 
readily seen that the shape

(13) in paragraph 2 it is 
of the velocity distribution
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curve is not altered by connecting the top and the bottom 
by an external conductor. The shape is determined solely 
by the value of Aa. The external current branch and what 
is in it influence the intensity of the flow, i. e. the average 
value of v, only.

6. Discussion of the Theory for the electrically 
short-circuited Channel.

For a fuller discussion of formula (15) in the preceding 
paragraph we may introduce the values of B and D. Fur- 

ther it should be noted that —— . A = — Aa. Finally, in
Ä ll/j II JJ

expression (8) paragraph 5 for D, the quality — is ob-
x h 

viously the current density /0 which the electromotive force 
E would create in the channel if the latter were filled 
with liquid at rest and if the external conductor had no 

resistance. So the last term in (8) is simply — where p is 

the pressure gradient to which Io would give rise. Taking 
these facts into account it is readily seen that expression 
(15) of paragraph 5 can be written:

If R — oo and E = 0 we have returned to the case
considered in paragraphs (1)—(4) and it is readily seen 
that (1) becomes identical with formula (13) of paragraph 
(2). Again if E = 0, R = 0 we simply have the channel 
short-circuited by an external conductor without resistance. 
Then (1) assumes the shape
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(2)

is

(3)

with

(4)

reduction of the 
of paragraph 2 it 
with and without

In the case 
a flow of

of a channel of width 2a — 0.250 cm. and 
mercury in a field of 10000 Gauss Aa =

The effect of the short-circuiting is a 
velocity. Comparing with formula (13) 
is seen that the ratio of the velocities 
short-circuiting

vs

TP Aa • li e is

31.3. As with this value the last factor in (3) is 1, — 
J_
Aa ~ 31.3* 
to about 3 p. c. of what it would be without short-circuit­
ing. From this it will be gathered that the short-circuited 
channel may represent an extremely effective “brake” to 
the motion of the fluid.

The “braking” effect may be controlled by a resistance 
in the external conductor. The effect of the resistance is 
clearly seen from equation (1). Assuming pe = 0, i. e. E = 
0, we find for the ratio of the velocities with and without 
resistance in the external conductor:

B
D = Ä*

large compared to e (4) may be written

Aa —Aa
VS = 1 e —e 
n A a Aa . —Aa'Vq Aa e e

! "o
So with short-circuiting the velocity is reduced

(5)
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In the example above Aa = 31.1. In this case, if It — It,, 
Vr • ^R— = 2 approximately and if It = nR, — increases as n, 
vs us
approximately, as long as n is a smaller number than 1, 

2 or 3. With increasing n approaches the limit Aa.
vs

Finally we may consider the general case in which there 
is both resistance and electromotive force in the external 
branch of the electric circuit. Then it is seen from (1) that 
the flow may be stopped altogether by applying such an 
electromotive force (in the direction of that induced by the 
flow) that 

(6) 

or equal to the impressed pressure gradient proper if It is 
small compared to Itc. If, now, pe is increased beyond the 
value given by (6) then the flow will change its direction 
and the channel with its circuit and field will act as an 
electromagnetic pump. So the expression (1) forms part of 
the theory of this apparatus and shows that the velocity 
distribution in the channel is quite independent of the 
velocity of the flow and only dependent on the quantity

With large values of flu the velocity is as seen from 
fig. 5 almost constant over the whole width of the channel. 
This information was derived on the supposition of a la­
minar flow. The very effective smoothing out caused by a 
strong magnetic field suggests that the results of our dis­
cussion may also prove applicable to a flow which without 
the magnetic field would be turbulent, while with the field 
it is made laminar.
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7. Characteristics of the electromagnetic Pump.
The volume flow V through an electromagnetic pump 

may be derived from the expression (1) in paragraph 6. 
Seeing that the average value of the last factor of this ex­
pression is determined by

If here li is small compared to Rc as it ought to be and 
if further Aa is large, we may replace (2) by

(3)

or if Aa is large compared to 1

(4)

from which

(5)

V = 2 ha (p—pe) cm.'3/sec.

The total pressure difference p between the inlet and out­
let of the pump is pL (apart from the losses at the inlet 
and outlet). Hence
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(6)
P ■L

= peL+W~9
H2_

2 ha x ■LV.

Seeing now that with the pump V is to be taken as nega­
tive and that peL is “the manometric pressure” p0 of the 
pump we have
<7> p=^-10~i^iLV

Fig. 8. Origin of the Pressure Loss at the Boundaries 
of the magnetic Field.

V being the numerical value of the flow. So the p-V charac­
teristic should be a straight line or the pressure drop 

Ph + e = Po—P should be so:

(8) ph + e = p0~p= IO“9 2Yax'LV'

With the actual pump there is an additional pressure 
loss at the boundaries of the magnetic field. This will 
readily be understood from fig. 8. Here the channel is seen 
located within and outside a magnetic field produced be­
tween two pole pieces HS, one (S) in front of and the 
other behind the channel. The field distribution curve too 
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is shown, it extends somewhat beyond the pole-pieces. The 
flow gives rise to electromotive forces which are smaller 
outside the pole-pieces than within. So circulating currents 
i must arise at the boundaries of the magnetic field having 
the directions indicated in the figure. Obviously the currents 
will cause hydromotive forces to 
boundaries will have a resultant 
opposing the flow of the liquid.

Now in order to develop an 
expression for the pressure loss at 
the two boundaries we may con­
sider a greatly simplified model, 
fig. 9.

Here C is the channel, B is one 
of the boundary lines of the pole­
pieces. To the left and right of B 
are two zones of width z in the 
direction of the flow. Within the left-hand zone the magne­
tic field has a constant value Hlt within the right-hand 
zone the field is H2. We shall imagine three walls Wt, W 
and W2 to be arranged. Of these and W2 cover the full 
area of cross-section of the flow while W leaves two 
openings above and below, the width of these openings 
being z. The three walls possess the rather peculiar quality 
of permitting the hydraulic flow to pass without obstruc­
tion, while forming an absolute hindrance to the electric 
currents. To the left of the field is constant, equal to 

to the right of W2 it is zero.
With this imaginary system a circulating current is set 

up the density I of which is obviously determined by

(9) I = = 109 V • (Wx — H2) Amp./cm.2.
2 h x 2x

Fig. 9. To the Theory of the 
Pressure Loss at the Bound­
aries of the magnetic Field.
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The corresponding pressure gradients within the left 

and right hand zone are respectively —ZZX Z and p ZZ2 Z. 

So the pressure loss is

(10) dp = ^/(H,-//.) = 10-«

Assuming now that ZZ2 = 0 and introducing the volume 
flow determined by V — 2ah-v, (10) may he written

(n) =

Twice this quantity — corresponding to the two boundaries 
— should now be added to the pressure drop occurring 
inside the field and given by formula (8). So the total 
electromagnetic-hydraulic pressure drop in the pump is 
represented by

(12) p„-p + dp = 10-’ ~ -(L + z) V.2 ah x

Thus it will be seen that the boundary effect may prob­
ably be taken into account by simply adding a certain 
length z to the actual length L of the channel or by re­
placing L by an effective length Lg somewhat greater than 
L. The correction z is likely to be proportional to the 
height h of the channel. Otherwise z also depends on the 
shape of the magnetic field curve and on the design of 
the outlet and inlet end of the pump when these ends are 
within the domain of the field or close to its boundaries.

Provisional Laboratory of Technical Physics. Royal Technical College, 
Copenhagen, May 1937.

Færdig fra Trykkeriet den 3. December 1937.


